I agree with you, mostly. Margins in the datacenter are thin for some players. Not Nvidia, they are at like 60% pure profit per chip, including software and RnD. That will have an effect on how we design stuff in the next few years.
I think we’ll need both ”GPU” and traditional CPUs for the foreseeable future. GPU-style for bandwidth or compute constrained workloads and CPU-style for latency sensitive workloads or pointer chasing. Now, I do think we’ll slap them both on top of the same memory, APU-style á la MI300A.
That is, as long as x86 has the single-threaded advantage, RISC-V won’t take over that marked, and as long as GPUs have higher bandwidth, RISC-V won’t take over that market.
Finally, I doubt we’ll see a performant RISC-V chip from China the next decade - they simply lack the EUV fabs. From outside of China, maybe, but the demand isn’t nearly as large.
I agree with you, mostly. Margins in the datacenter are thin for some players. Not Nvidia, they are at like 60% pure profit per chip, including software and RnD. That will have an effect on how we design stuff in the next few years.
I think we’ll need both ”GPU” and traditional CPUs for the foreseeable future. GPU-style for bandwidth or compute constrained workloads and CPU-style for latency sensitive workloads or pointer chasing. Now, I do think we’ll slap them both on top of the same memory, APU-style á la MI300A.
That is, as long as x86 has the single-threaded advantage, RISC-V won’t take over that marked, and as long as GPUs have higher bandwidth, RISC-V won’t take over that market.
Finally, I doubt we’ll see a performant RISC-V chip from China the next decade - they simply lack the EUV fabs. From outside of China, maybe, but the demand isn’t nearly as large.